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ABSTRACT 

Axinos are the supersymmetric partners of axions. They arise in models incor- 

porating both low-energy supersymmetry and the axion solution of the strong 

CP problem. In the present state of knowledge several of the key properties of 

axinos, which control their cosmological consequences, are poorly determined. 

But generically there are very significant cosmological consequences, and we at- 

tempt to survey the possibilities here. In a wide variety of models the axino is 

the lightest R odd particle, and destabilizes the more conventional candidates 

for this title (photino, Higgsino . . . . ) on cosmological time scales. While this 

consideration perhaps casts some shadow over an important class of dark-matter 

candidates, it turns out that in a large class of models the axino itself becomes 

a plausible dark-matter candidate. In other models the axino is heavy, and un- 

stable. Even then axinos are of cosmological interest, because their decay can be 

the dominant mechanism for production of the lightest R odd particle. 
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1. Introduction 

There are good reasons, both observational and especially theoretical, to 

suspect that most of the mass of the Universe is in some exotic and hitherto 

unknown “dark” form. 

Quite independently of this, there are also good reasons to suspect the exis- 

tence of specific, but exotic and as yet unobserved sorts of elementary particles. 

Among the best motivated and most widely discussed possibilities for widening 
the spectrum of elementary particles are to include axions on the one hand or 

sparticles (supersymmetric partner particles) on the other. Axions are desirable 

since they allow one to implement the Peccei-Quinn mechanism for resolving of 

the strong CP problem [1,2]; there seem to be no other comparably compelling 
ideas in this regard. Low energy supersymmetry may be desirable in helping one 

to understand the approximate masslessness (compared to the Planck mass or the 

mass where unification of gauge forces occurs) of the Higgs boson which violates 

N(2) x U(1) electroweak symmetry [3,4]. Although existing concrete model im- 

plementations tend to be unwieldy and not entirely satisfactory, the basic thought 
that potentially large radiative corrections to this mass are naturally avoided by 

cancellations between boson and fermion loops is certainly promising, as are 
the constraints that supersymmetry imposes on dangerous scalar self-interaction 
terms even at the classical level. 

These two attractive theoretical speculations are not at all mutually exclusive 

or contradictory. Indeed, axions and supersymmetry both find natural homes, 

and play important dynamical roles, within superstring theory. 

It is quite remarkable that the particles whose existence is suggested by the 

internal logic of particle physics may very plausibly address the missing matter 

problem of cosmology. Upon estimating the cosmological production either of 
axions or of the lightest ordinary supersymmetric particle (abbreviated LOSP; 

see below) one finds that they are produced during the big bang and persist as 
a relic gas sufficiently exotic and dark, and with roughly the right average mass 

density, to provide the desired missing matter. 

Two voluminous literatures have developed around these two dark matter 
candidates. However, strangely, there has been relatively little (though still not 

inconsiderable!) discussion of the consequences that follow when one simultane- 

ously takes both attractive theoretical ideas - the axion solution of the strong 
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CP problem, and low-energy supersymmetry - seriously. That is what we shall 

do here. 

We find that axinos - the supersymmetric partners of axions - have unique 
properties, and can have dramatic cosmological implications. The reason the 

axino is special is that it is very weakly interacting (for the same reasons as 

the axion), and in a wide class of models - but by no means generically - it 
is also very light (for similar reasons as the axion). The possible cosmological 

implications fall into three broad categories, that are realized within different 

models: 

1. The axino may acquire a large mass, larger than that of some other more 

conventional R-odd particle. Then it is unstable, but generally extremely 

long-lived compared to familiar elementary particles of comparable mass. 

In this case the decay of axinos can easily become the dominant source of 

LOSPs. This effect at the very least modifies estimates of what mass and 

couplings the LOSP must have in order to provide the dark matter. In 

some parameter regimes one would simply produce too much mass by this 

mechanism. One derives constraints on particle physics models by requiring 

that they avoid this disaster. 

2. The axino itself may well be the lightest supersymmetric particle. In this 
case the LOSP, which previously seemed an attractive dark matter candi- 

date, would be lost. More precisely, the LOSP - generally some linear 

combination of photino, bino, and Higgsino . - would be unstable on 

cosmological time scales against decay into an axino plus ordinary (i.e. R 

even) matter. 

(It is noteworthy that although the LOSP is generically unstable on cosmo- 

logical time scales, it is estimated to be quite stable on ordinary macroscopic 
or Iaboratory time scales. If and when the particles postulated by low energy 

supersymmetry are discovered, among them an apparently stable one, it will be 
important to check this apparent stability carefully.) 

However light axinos themselves are stable, and their contribution to the mass 

density of the universe must be considered. If it is too large, we must discard the 

model; if it is too small, the axino has no cosmological significance (and neither 

does the LOSP). Most interesting of course is the golden mean - 

3. The axinos themselves may provide the dark matter. It turns out, that in 
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a large class of models their contribution to the density is about right for 

this. For axinos to fulfill this role their mass should be a few keV. They 
would provide an example of warm dark matter. 

Various bits and pieces of our discussion have appeared in previous analyses, 

which will be quoted as appropriate. However as far as we know a systematic 

discussion attempting to set out the most important alternatives has never ap- 

peared. Indeed most or all of the previous authors seem not to have been fully 
aware of the alternatives, and (because they made different tacit assumptions) 

reached quite different and often contradictory conclusions. In addition to the 
work of consolidation, we shall also have occasion to expand and revise some of 

the previous discussions, especially in regard to the treatment of thermal pro- 
duction of axinos during the big bang. 

2. Axino types 

Three different methods of implementing Peccei-Quinn symmetry are known. 

The different implementations lead to only slightly different quantitative predic- 

tions for axion phenomenology. As we shall soon see, however, their consequences 
for axino phenomenology are dramatically and qualitatively different. 

The first implementation is essentially due to Kim [5]. In Kim’s scheme, one 

postulates the existence of an SU(2) x U(1) sin e colored quark Q such that gl t 
the right-handed component QR of Q carries Peccei-Quinn charge $1 while the 

left-handed component Qr. carries Peccei-Quinn charge -1. The complex scalar 

field +4 whose phase will become the axion field is an SU(3) x SU(2) x U( 1) singlet 
with Peccei-Quinn charge +2. The important coupling among these fields is 

L = ~~QRQL + hermitean conjugate. (2.1) 

When 4 acquires a vacuum expectation value (4) = F this term generates a mass 

mQ=fF (2.2) 

for the Q quark. If we ignore fluctuations in the magnitude of 4 (which correspond 
to very massive quanta) and write 4 = Fe’% then a will represent the axion field, 

with a properly normalized gradient energy term. 
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The interactions of the axion field with conventional matter degrees of free- 

dom at energies and momenta well below mg may be obtained by integrating 
out the Q quark. The most significant interaction arises from a triangle diagram 

connecting the axion field to two gluons through an internal Q loop. This gives 

the effective coupling 

Lea. = g$tr GSUGfiY. (2.3) 

The second implementation is essentially due to Dine, Fischler and Srednicki 

(DFS) 161. In their scheme one postulates the existence of two complex SU(2) x 

U( 1) doublet scalar Higgs fields hr and hz carrying electroweak hypercharges ~3 

and Peccei-Quinn charges Qd and Qu respectively. No new quarks are required 
- instead, the quarks and leptons of the stands&model have Peccei-Quinn 
charges. The right-handed charge -5 quarks and the right-handed leptons carry 

Peccei-Quinn charge -Qd and couple only to hr while the right-handed charge 
+$ quarks carry Peccei-Quinn charge -Q,, and couple only to hz. Thus far, 
we could have been describing the original model of Weinberg and Wilczek [2]. 

The crucial innovation of DFS is the introduction of an additional SU(3) x 

SU(2) x U(1) singlet complex scalar field 4 with Peccei-Quinn charge Qb where 

2Q4 + Qu + Qd = 0. This field can have an invariant coupling of the form 

LDFS = gqi2hfhz + hermitean conjugate. (2.4) 

Because 4 is an SU(3) x SU(2) x U(1) singlet it is consistent to imagine that 
it acquires a large vacuum expectation value F. Writing 4 = Fe’% as before 

we again identify the properly normalized axion field a. Strictly speaking one 

must consider the full symmetry breaking (i.e. , the non-zero vacuum expecta- 

tion values of hl and h2 and chiral symmetry breaking), which introduces small 

corrections to this expression for a. These corrections can be very important for 
the phenomenology of physical axions, since they significantly change the cou- 

plings of axions to ordinary matter at low energies. This can (and does) happen 
because the coupling of the zero-order expression for a to matter is exceedingly 

small, and so even small fractional corrections to the form of a involving fields 

which couple more strongly can significantly affect the total coupling. However, 
for the purposes of this paper the zeroth order expression will be sufficient and 
appropriate. 
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A troublesome feature of the DFS scheme is that the coupling parameter g 

must be taken to be quite small, of order v/F, where v is the vacuum expectation 

value of the fields violating SU(2) x U(1) (i.e. u c y). This is because we want 

hl and hz to develop vacuum expectation values of order v. For a typical F of 
interest in axion physics, say F x @GeV we must require g 5 lo-‘. For the 

moment we simply note this feature. It will play an important role later. An 

idea which may make this small parameter appear less arbitrary, due to Kim and 
Nilles [7], will be mentioned later. 

Finally a third possibility should be mentioned. It is simply to postulate 

the existence of a scalar field a which has a coupling of the type (2.3) This 

coupling is not renormalizable, and so without further knowledge of the true 
ultraviolet behavior of the ultimate theory in which it is embedded one cannot 

derive finite values for the radiative corrections it induces. This is an unfortunate 
situation, but one we already live with in the theory of gravity. (And one might 

take the attitude, as we do tacitly for gravity, that radiative corrections due to 

axion exchange though formally infinite are surely neglible.) Indeed it seems that 
superstring theory generically contains fields and couplings of precisely this type. 

Though it necessarily involves us in heavy guesswork, we shall try to analyze this 
case too. 

For ease of reference we shall call the three implementations mentioned above 

I, II, and III respectively, and refer to the axinos they generate as being of type 
I, II, and III. 

3. Axino mass for the several types 

3.1 TREE LEVEL RESULTS FOR GLOBAL SUPERSYMMETRY [8] 

To frame the context, it is appropriate briefly to recall some relevant general 
features of supersymmetric models. 

A globally supersymmetric gauge theory contains gauge supermultiplets 
(A;, XC, D,) and chiral matter supermultiplets (d’, $I;, Fi). The Fs and Ds are 

auxiliary fields and generally do not represent propagating degrees of freedom. 
The scalar potential is constructed from a superpotential W which is a polynomial 

function in the chiral supermultiplets (complex conjugation is not allowed within 
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this polynomial), and so-called D terms. The equation for the scalar potential is 

V = (R)*Fi + ~D~D= . 

The equations of motion can be solved to eliminate the Fs and Ds, to give 

F/=$, Da = e, c d*T,Q , 
m 

where T, is a representation of the cu’th generator of the gauge group and e, is 

the appropriate gauge coupling. 

Now suppose that the Lagrangian is invariant under a global Peccei-Quinn 

U( 1) transformation of the chiral supermultiplets: 

95’ + eXp(iXQ;)4’ . (3.3) 

Then the essence of Goldstone’s theorem, which follows directly from the postu- 
lated invariance of the Lagrangian, is the statement that G. A4; = 0, where 

is the boson mass matrix, and 

and where 

N = 
Ji 

~(Q(d,)f - FPQ . 

(3.4) 

The familar implication of all this is that there exists a massless axion field, 

which is expressed by G in the (@,d”) basis. (Note of course that (Q(4)); 

means Qi(d’), with no sum on i.) Th e normalization factor N insures that if the 
gradient energy of the 4 fields was conventionally normalized, then so will be the 

gradient energy of the scalar field defined by G. Note that N is a more precise 

version, or generalization, of the parameter we called F before. 



The axion field does not remain massless when non-perturbative effects are 

taken into account. We shall not review that famous story here. 

In a supersymmetric theory the axion belongs to a supermultiplet, and it 
is important to keep tabs on the destiny of each member of this supermultiplet. 

The supermultiplet contains, in addition to the (pseudo)scalar axion field, a scalar 
field s - the saxion, and a Majorana fermion field fi - the axino. In the absence 

of supersymmetry breaking these fields would be degenerate with the axion, and 

the question arises how heavy they become when supersymmetry is broken. 

The saxion field is given by 

'I = k ((Q(d))~,(Q(d'))i). (3.7) 

The r&no field is given by 

*L = $((Q(d))iv'J) 

in the (&A”) basis. 

For the axino the situation is quite simple, and the result quite interesting. 

From the general expression for the fermion couplings in the supersymmetric 

Lagrangian 

1 SW ~aOiadj*t~~ + gw 
one readily finds (as pointed out by Tamvakis and Wyler [8]) that the fermion 

mass matrix acting on the axino is given by 

(MF*L) = (-i(Q(F))i.O) 

where the vector (F)j is defined by 

(F)j E (Fj) E (aK'/a#). (3.11) 

Now a non-zero vacuum expectation value for the F terms signals supersymmetry 
breaking. Thus in a theory with low-energy supersymmetry one finds the mag- 

nitudes of the components of (F) are at most of order O(miUsu), i.e. perhaps 
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N (1 TeV)2. The axino mass is therefore expected to receive a contribution of 

order 

mi - 0 (3.12) 

from this form of SUSY breaking. For rn~u~~ = 103GeV and F - 1012GeV, one 
finds rni N 1keV. 

A more elaborate algebraic analysis is necessary to discuss the saxion mass, 
and we shall merely report the main result and refer the interested reader to the 

literature [8,9]. The main result is that the saxion maSs in global symmetry is 

of order m~usu/F if and only if the expectation values of the D terms vanish, 
(Da) = 0 for all (Y. In other words, if supersymmetry is broken by D terms 

then Peccei-Quinn symmetry does not enforce extra cancellations and the saxion 
acquires a mass of order rn~u~y, as is typical for all conventional scalar particles 

in this framework. 

It must be emphasized that these results have been derived within the as- 

sumption of global supersymmetry, and that they are purely classical (tree-graph) 

results. We must now discuss the changes wrought by supergravity, and by ra- 
diative corrections. 

3.2 SUPERGRAVITY AND RADIATIVE CORRECTIONS 

Most recent attempts to implement low-energy supersymmetry have exploited 

the new possibilities offered for supersymmetry breaking terms within supergrav- 

ity theories incorporating a “hidden” sector. The existence of a hidden sector, 

that is of matter which couples to the graviton supermultiplet but not to other 

known forms of matter with any sensible strength, was originally postulated ad 
hoc for model-building purposes, but has come to seem more natural within the 

context of heterotic string theory; In that theory the fundamental gauge group of 
the world is E(8)xE(8) and multiplets in the “other” E(8) effectively constitute 

a hidden sector. 

We shall not need to enter into the murky depths of supergravity theory 

here. In fact so far the deep theory, such as it is, has not allowed any convincing 

improvement upon a simple pragmatic prescription, as follows. 
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Supersymmetry allows certain soft breaking terms, whose incorporation does 

not spoil the ultraviolet behavior of the theory. (That is, their incorporation does 
not require the inclusion of non-supersymmetric counterterms to cancel infinities 

in radiative corrections.) These soft terms are of very restricted forms [lo]: 
m*$‘q4, m2(4i4j + h.c.), m(d;djdk + h.c.), and m2XX where the 4’s are the 

scalar components of the chiral superfields in the theory and X can be any of 

the gauginos. These are, of course, superrenormalizable interactions, and occur 

in the Lagrangian with coefficients having units of mass to a positive power. 

The pragmatic prescription, which represents the current state of knowledge and 
conjecture is to represent the effects of supergravity with supersymmetry breaking 

in a hidden sector at low energy by allowing soft symmetry breaking terms to 
be added to a globally supersymmetric model. Generally, all the ~6’s and X’s 
get masses, and the superpotential determines which other soft terms appear. 

The mass scale for the coefficients of soft breaking terms is rn3,s = 2, where 

MS is the primary scale of supersymmetry breaking and Mpl. is of course the 
Planck mass. The gravitino mass m312 plays much the same role as our previous 

rnsusy, and should be taken to be roughly the same order of magnitude. It 

is interesting that this determines the primary symmetry breaking scale to be 

MS - 10”GeV. This numerical value is quite close to the most desirable value 
for the symmetry breaking scale F in axion physics, and invites speculation that 

these two breakings are closely related. In addition, supergravity may generate 
effective nonrenormalizable corrections to the superpotential. These appear with 

coefficients proportional to an inverse power of mass. The scale of this mass is 

naturally taken to be Mpl.. These terms, of course, do not violate supersymmetry. 
They are negligible in most contexts, but will play an important role at one point 

below. 

Tree level mass terms for fermions in chiral multiplets are not soft. As is indi- 

cated in (3.8) , the only non-zero components of the axino field involve fermions 

in chiral (as opposed to gauge) multiplets. Therefore the previous result for the 

axino mass remains valid in supergravity theories at tree level. 

On the other hands, soft terms certainly can contribute to the saxion msss at 

tree level - in fact a saxion mass term is a soft term all by itself directly. Thus 
in the spirit of supergravity theories the saxion is expected to be one of the vast 

multitude of particles with a mass of order O(ms,s). Since it is R even, it decays 
predominantly to 2 gluons and is not cosmologically significant. 
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The most striking point remains that the axino mass is still tiny at the clas- 

sical or tree-graph level, even taking into account the soft symmetry breaking 

terms. It remains to consider the effect ~of radiative corrections. These turn out 

to be very diierent for the various types of axion models described above. 

Each of these models may be supersymmetrized in a straightforward fashion, 

although existing constructions of superpotentials which spontaneously imple- 
ment the desired symmetry breaking pattern are rather awkward. (This seems 

to be true generally for low-energy supersymmetry models, whether or not they 
incorporate Peccei-Quinn symmetry.) In the supersymmetrized versions, 4 is 
promoted to a chiral supermultiplet, and the axion is the phase of the scalar part 

of 4. 

The type I or Kim axion model was also supersymmetrized by Kim [ll]. 

Although for the sake of concreteness we shall discuss his specific model, the 

main conclusions seem to be independent of its details. 

The superpotential is 

W = f&Q4 + hidden sector (3.13) 

where ^ means chiral superfield. Kim chooses his hidden sector so that when 

supersymmetry is broken 4 gets a vev (Q) - F and hence the quarks Q ac- 

quire masses fF. F depends on the parameters of the hidden sector, but is of 

O((Mp,mw)‘/2). To consider the axino mass we need the entire superpotential 
complete with hidden sector: 

W = f&&d + (Al&’ + m2)i + (&&’ + m’*)? + p3 

The PQ transformation of the chiral superfields is: 

6 -3 exp(2iX)d $ + exp( -2iX)J 

(3.14) 

(3.15) 

&, --t exp( -;X)Q i$ + exp(-iX)Q (3.16) 

^ ^ 
Z-2 i’ + i’. (3.17) 

X1, &,m,m’, and p are the hidden sector parameters, chosen so that 4 has a 

non-zero expectation value in the ground state. 
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Let us now apply the preceding analysis to this model. The only F terms 

which acquire vacuum expectation values are [5] 

Fz = g and FZ, = ?!!. (3.18) 

Since 2 and 2’ have zero PQ charge, the axino has mass zero at tree level. This 
conclusion is valid at tree level in supergravity also. 

However, the axino does acquire a significant mass at one loop. Supergravity 

breaking is expected to induce the soft term ms,,Af&Q in the scalar potential, 

where rns,z is the gravitino mass and A is a number of order 1 (whose precise 

value is determined by the details of the supergravity theory.) 4, g, and Q are 

the scalar parts of their respective supefields. The Feynman diagram exhibited 

in Figure 1 gives the axino a mass m; = (3/16~~)f2Am~,~, as was shown by 
Moxhay and Yamamoto [12]. 

Moxhay and Yamamoto go on to suggest, on the basis of very specific dynam- 
ical assumptions, that f2 - O(LY~). In general, though, (and certainly if the PQ 
symmetry is broken in a hidden sector, as suggested by Kim) f is not uniquely 

determined. So it seems appropriate to summarize the situation for type I axino 
models in the estimate 

rni - 1OGeV type 1 (3.19) 

Now let us consider the type II or DFS axion scheme. In the DFS model, 
+4 couples weakly to the Higgs scalars of electroweak symmetry breaking instead 

of to heavy quarks. This coupling is through the term (2.4) . The DFS model 

cannot be supersymmetrized exactly as it stands because a 4’hisijh; term in the 

scalar potential cannot be obtained from a superpotential. A very similar model 

can be constructed, as follows. (The next few paragraphs are rather technical and 

can be skimmed without loss of continuity. In fact, we recommend this course to 

all but the most fanatic model-builders.) 

Consider the N=l supergravity extension of the standard model, as described 
for example in section 7 of Lahanas and Nanopoulos [4]. It includes the following 

chiral supermultiplets (family indices suppressed): 
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Chiral Supermultiplet 

iic 

B= 

& 

ril = 

1;12 = 

Transformation Under SU(3) x SU(2) x U(l)y 

( > 1,1,-; 

( > 3,1, ; 

( > 1,2,-i 

( > 1,2,-i 

( > 
14 

The low energy superpotential is 

. ^ ^ ^ ^ ^ 
W = htfi?cQU’ + h,fiTeQD’ + h,fiTcLE’ + rn&rcHl 

where ht, hb, and h, are Yukawa couplings for the top and bottom quarks and 

the T lepton. rnq is a mass parameter which cannot be set to zero naturally and 
which affects the electroweak symmetry breaking in the model. 

An axion of essentially the DFS type can be introduced by replacing the m4 
term in the superpotential with 

^^ ^ 
kHHTeHl 

where I? is a new superfIeld whose scalar part is to get a vev (H) - F. The 

axion is the phase of H. k is a dimensionless parameter which must be small (see 
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below) if the axion is to be invisible. The PQ transformation is given by: 

l? -+ esp(ioQH)fi 

HI + exp(iorQd)fil J?z -+ exp(ioQu)8s 

fit -+ exp( -iaQd)& tic + exp( -iaQu)oc 

where QH + QU + Qd = 0. This relationship among the PQ charges differs from 
that of the original DFS model only by a ‘2’. 

The scalar potential is V = F terms + D terms + V’,f, where V,,,f, are 

the soft terms induced by supergravity breaking. Everywhere that Lahanas and 
Nanopoulos have rn4, we must replace it by k(H). pi Since rn4 was O(mw) - 

actually O(1OGeV) in the specific models of Lahanas and Nanopoulos - and 

since (H) - F - 1012 GeV, k must be of order 10-l’. There is no underlying 
motivation for k to be this small - it just has to be if the axion is to be invisible. 

This fine tuning is analogous to the tine tuning of g in (2.4) that was necessary 
in the original DFS model. 

The scalar potential V in a direction where squark and slepton fields do not 

acquire vacuum expectation values is given by 

v = VF + VD + v,,f, 

with 

vF=I~~+l~f+i~l = k21ff12/Hz12 + k21H121H~/2 + k21H~cH112 

where the 3rd term can be neglected and 

V soft = dlH11~ + dlHz12 + m~IHI* + kBm312(HHTeH1 + h.c.). 

VD may be taken over unchanged from [4] since J!I is a gauge group singlet. H 

is the scalar part of H, and similarly for the other superfields. The parame- 
ters ml,mz,and rnH are masses of O(ms,s), and B is a constant of order 1. In 
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principle, they are all determined by the breaking of the underlying supergravity 

model. Actually their values are directly determined at some high energy scale by 
supergravity breaking, and are renormalized as the energy scale is lowered. Elec- 

troweak symmetry breaking occurs at the energy scale where the renormalized 

parameters satisfy [4] 

(mf + k2F2)(mi + k2F2) - (kBm3pF)2 < 0. 

When this condition is satisfied, the neutral components of HI and Hz acquire 

vevs. 

There seems to be no simple way of ensuring that the field H gets a large 

expectation value of order F. One possibility is to add a hidden sector, as Kim 

did in [ll] and [7]. 

Let us now determine the mass of the amino in this model. The axino is given 

by 

~ = QHFB + Qu(Hz)& + Qd(HI)& 

Q;p + Q:(H$ + &@I)~ 

After electroweak symmetry breaking, the F terms FH, and FH~ get vacuum 

expectation values of order 103GeV (FH is proportional to l/F2 and hence is 

negligible.) Thus the argument leading to the estimate following (3.12) applies, 

via. 

m;-lkeV(lol&eV)-l. type II (3.20) 

In this type of model, as opposed to the type I or Kim model, there is no 
large one loop contribution to the axino mass. The reason for this difference 

is simply that k is so small. The type I axino may have a significantly strong 
coupling, namely that to the heavy quark, parametrized by f. Thus, it may be 

subject to significant radiative corrections. On the other hand the type II axino is 

truly weakly coupled at all scales, and is not significantly perturbed by radiative 

corrections. 

It is appropriate to mention another possible approach to the construction of 

an axino extension to the DFS scheme [7], w ic seems to have attractive features h h 
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(and in particular, may offer a possible rationale for the small coupling.) That is, 

we may stick to the original invariant form (2.4) but interpret it directly as a term 
in the superpotential, written in terms of superlields. This term would usually 

not be considered, because it is non-renormalizable. However, as mentioned 
before, the pragmatic approach to supergravity suggests that one ought to allow 
this term, with a coefficient inversely proportional to Mpt.. The term in the 

superpotential becomes 

(3.21) 

In the scalar potential, this term will yield terms of the types 

and 

(3.22) 

(3.23) 

The second of these is completely harmless; the first is certainly acceptable for 

g 5 10e2. We will not investigate model building along these lines in detail (see 

[7] for an example) but even the simple considerations above indicate that there 

are possibilities for identifying the small parameter k with some independent 
parameters already required to be small on other grounds, e.g. & or J&: 

Finally let us consider the type III axino scheme. The effective theory here 

looks much like the Kim scheme, but without the quark Q. One might suppose 
that in the absence of the heavy quark field those supergravity corrections to 

the squark mass which ultimately generated a sizable axino mass could not arise. 
One might therefore be tempted to expect a light axino in the type III scheme. 

However, the lesson we learn from the type I scenario is that it is not possible to 

draw tirm conclusions without knowledge of the high energy theory which gives 

the effective coupling (2.3). 
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4. Elementary processes 

The couplings of axinos are of course closely related to the familiar coupling 
of axions [13]. The most important of these may be derived by supersymmetry 

transformations of the axion couplings. Thus from the axino-gluon-gluon vertex 

L aGG = 
~stron~ N 1 
- - a - ep,,p6GClr”Gcpb 

8x F 2 

follows the axino-gluino-gluon vertex 

L-- = amug N = 
aGG 

-_ 
a?r 

F a -d’“@G;Y . 

N is the number of flavours of quarks with PecceiQuinn charge. For type I 
models, N=l, while for type II models, N=6. These effective couplings are valid 
at energy scales between the Peccei-Quinn symmetry breaking scale F and the 

electroweak symmetry breaking scale. The constraints on the mass of the axion 

can be expressed as 10”GeV < F/N < 10i3GeV [15]. Therefore, in the rest of 

this paper “F” means “F/N” and will usually appear as (F/1012GeV). There are 

also effective couplings between axions and fermions and hence between axinos, 

fermions and sfermions, but we will not need these in what follows. The charac- 

teristic decay rates which are perhaps the most important qualitative feature of 

axino physics follow immediately from the form of the vertex (4.2) 

In principle there are two possibilities: either the axino is not the lightest 
supersymmetric particle, or it is. Given the estimates (3.19) and (3.20) , and 

existing experimental lower bounds on the mass of ordinary superparticles, the 
6rst case appears rather unlikely. Nevertheless, we consider it now. For the sake 

of concreteness, let us suppose that the photino is the lightest supersymmetric 

particle or LSP and that the only available decay channel is 6 + 77. (The 

qualitative conclusion does not depend on this.) If the axino is much heavier 

than the photino, the axino will decay with a lifetime of order [16] 

ri - 10-l 
sec ( 10r&eV)2 (IOGeV>-’ 

This is an unusual lifetime for such a heavy particle, and could have important 

cosmological consequences as we shall see. However it is difficult to imagine 
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practical laboratory experiments which could sense the existence of an unstable 

axino, since its feeble couplings to ordinary matter at low energies preclude any 

significant production rate. 

If the axino is the LSP, the situation is completely different. The lightest 
ordinary supersymmetric particle or LOSP (h ere taken to be the photino 7) will 

decay into it with a lifetime of order [IS] 

?“10-1sec’(101~GeV)2(10~~eV)-3 (4.4) 

This estimate unfortunately depends cubically on the mass my and inverse 
quadratically on the coupling F, both of which are uncertain. However, over 

a wide range of the most interesting values of these parameters, the lifetime falls 

within a very interesting region. That is, it is short on cosmological but quite long 

on laboratory time scales. While the feebly coupled axino will not be produced 

in significant numbers in any accelerator, the LOSP will be relatively easy to 
produce at accelerators with sufficiently high reach in energy. Thus we might be 
presented with particles that would appear at f&t sight to be absolutely stable, 

but which could reveal their instability to searchers looking for their decay prod- 

ucts downstream in a beam dump type experiment. A particularly interesting 

possibility opened up by this line of thought is that the LOSP could be charged 

or colored. For truly stable particles, this possibility is all but ruled out by the 

sensitive searches for trace contaminations of stable anomalous relics bound to 
ordinary matter, using mass spectroscopy. Given any reasonable rate of produc- 

tion in the big bang (certainly expected for the particles contemplated here), such 

charged or colored stable particles would almost surely not have escaped notice. 

However the existence of charged particles whose lifetime is short on cosmological 

time scales are not so constrained, and this speculative possibility perhaps gains 

a certain small degree of respectability from our considerations. 

If the LOSP is some neutralino state other than the photino, several decay 
processes and mixing angles must be considered in determining its lifetime, but 

the result does not differ qualitatively from (4.4). If the LOSP carries an addi- 

tive quantum number, somewhat different decay processes must be considered. 
Suppose, for example, that the LOSP is a sneutrino. Then the relevant decay pro- 

cesses are fi --t ZlZv or 5 ---t ZiWe. They proceed from elementary 622 or Cl%%’ 
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vertices by attaching i+ or fie lines respectively. (If the 6 is lighter than the W, 

one must either allow the 2 or W become virtual, and attach light fermion lines; 

or resort to 5 + sivy, which can arise from an underlying ZiZr vertex.) These 

processes are all somewhat slower than the photino decay considered above, but 

still correspond to lifetimes much less than the age of the universe. 

5. Axino cosmology 

In forming expectations for axino cosmology, three factors are crucial. These 

are whether it is the axinos or the LOSPs that are stable, the lifetime of the 

quasi-stable species, and the potency of equilibration (i.e. production and de- 

struction) processes. Together with the mass of the stable species, these factors 

determine the relic density, whose ratio to the critical density is the most im- 
portant cosmological output. Since each of these factors is affected by various 

parameters and model choices which are poorly determined in the present state 

of knowledge, one must explore a variety of possibilities that may at first appear 
bewildering. However, we believe that by keeping in mind that it is these three 

factors that control the cosmology you will be able to follow the thread. 

Let us begin with some general observations. Since the axinos are coupled 

only weakly to standard model particles, it seems likely that they will decouple 

early, when still relativistic. If they are stable (i.e. if they are the LSP), they will 

contribute to the present mass density of the universe, as dark matter. Because 

they decouple while relativistic, their abundance at decoupling is roughly equal to 

the photon density at that time. During adiabatic expansion these two numbers 
remain comparable. However their ratio does change in a calculable way because 

the entropy of annihilating species increases the photon number density but does 
not affect the axinos. This is the same effect that lowers the temperature of the 

relic neutrino gas relative to the microwave background. Taking it into account, 

we can use the observed photon density to estimate the mass density in axinos. 

We obtain a bound on the &no mass by requiring that the ratio 0s of the axino 
density to the critical density, and the Hubble constant h measured in units 

of (100 km s-l Mpc-‘) satisfy Rih2 < 1. Using standard estimates [14], this 

corresponds to 

(5.1) 



where geff = 0.75g = 1.5 for a two component axino, and g,(TD) is the effective 

number of degrees of freedom (1 for bosonic degrees of freedom, 7/S for fermionic) 

at the decoupling temperature 2’~. In the minimal standard model if a species 

decouples before electroweak symmetry breaking, g*(Z’D) = 106.75. In a super- 

symmetric model with 2 complex Higgs doublets, if all the supersymmetric parti- 
cles are in thermal equilibrium when the axino decouples then g*(TD) = 228.75. 

We conclude that if the axino is stable and is present in thermal equilibrium at 
high temperatures and decouples when relativistic, then 

m; < 2keV. (5.2) 

This 2 keV bound assumes that all the supersymmetric partners of the standard 

model particlez~ are in equilibrium when the axino decouples. If only some of 

them are in equilibrium, the bound is between 2 keV and 1 keV. 

Now let us consider the situation in the models we described above. In all 

three models, the axinos are handily maintained in thermsI equilibrium at high 

temperatures through the reaction depicted in Figure 2. For T < F, the rate is 
given by 

3 
r N 01,T3. 

16aF2 

The condition for thermal equilibrium is P > H, where the expansion rate 

or Hubble parameter is given according to standard assumptions [14] by H = 

1.66(g,)‘/2T2/Mpr, N 25T*/Mp~ for gt = 228.75 at high temperatures. Putting 

these together, we find that the axinos decouple at 

TD N 10”GeV ( lol;eV)2 (c)-” 

and are in equilibrium at higher temperatures. Thus the axino decouples at a 
high temperature, while still relativistic. 

(A subtle point arises here, which merits explicit notice. The crucial anoma- 
lous couplings of ax&s and of axinos to gauge particles persist for virtual mo- 

menta substantially larger than the masses of the fermions in the triangle graphs 

which generate them. Therefore, the reaction in Figure 2 proceeds even when the 
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temperature is much higher than the masses of the fermions in the triangle graphs 

but still lower than F. This reflects the fact that the anomalous Ward identities 
are local equations, that is that they hold for large momentum transfer and not 

only for the integrated charge. Perhaps the simplest way to understand this is 
to recognize that the anomalous contributions to the triangle graph arise from 

the necessity to include regulator terms. The effect of these regulator terms is 

most tr’ansparent if Pauli-Villars regulators are used: the anomaly arises because 

the violation of chiral symmetry associated with the large mass of the regulator 

particles persists even as the mass is taken to infinity. Because the essential con- 
tribution arises from these infinitely massive particles, it is not affected by tinite 

momenta inserted at the external legs.) 

In type I axino models ms from (3.19) is generically much greater than 2 keV. 

Then type I models seem to be viable only if one or another of the following a 

priori unlikely conditions is true. First, f may be very small, so that ms 5 
2keV. Or’second, the axino may be so heavy that it is not the LSP (as we 

mentioned above, this is not easy to arrange.) Or third, some of the cosmological 

hypotheses which went into the calculation are not true for the actual evolution 

of our universe. To generate a sufficient suppression of axino number density, 

requires a 6ig departure from the standard radiation-dominated big bang to occur 
at temperatures T < To. Perhaps the most attractive idea along these lines is to 

suppose that a period of inflation intervened between TD and the present, and 

the universe never subsequently reheated above this temperature. 

Sophisticated readers will notice a close resemblance between the problems 

encountered here and the usual gravitino problem of supergravity theories. In 
that context, the most popular hypothesis seems to be the third one mentioned 
above. A significant difference between the two cases is that the decoupling tem- 

perature for axinos is smaller than what one finds for gravitinos, at least for 

F < Mpl. . This exacerbates the problem, already serious for gravitinos, of rec- 

onciling a low reheating temperature with a plausible scenario for baryogenesis. 

Let us further pursue the cosmological implications of heavy, unstable axinos 
in type I models, i.e. the second alternative above. 

As above, let us suppose for the sake of concreteness that the photino is 
the LSP, and the only available decay channel is G -+ 77. (Again the qualita- 
tive conclusion does not depend on this.) Unless the axinos decay fairly rapidly, 

the universe will become matter dominated by axinos for a brief period. The 
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temperature at which matter and radiation contribute equally to the density is 

TEQ = 5.5R,h2eV [14] and the heavy axinos contribute Ri - m;/2keV. There- 
fore, the universe becomes matter dominated at 

TEQ - 300MeV ( l,,zev) 

The lifetime (4.3) for the axino decay 5 + 77 corresponds to a temperature [14] 

Taxino decay - 3MeV (10&V) -’ ( &&)3’2 (5.6) 

Hence, the condition for an epoch of axino matter domination to occur is 

mz < 10’GeV ( l,,l&ev) . 

When the axinos decay, they will increase the entropy per comoving volume by 

a factor of [14] 

loo (19~eV)-1’2 (l@$eV) 

The temperature after the axinos decay and most of the photinos thermalize is 

TRH - lOMeV ( 1o&ev) -I( 10~ev)3’z 

If the axinos decay during or after the time of nucleosynthesis, the entropy pro- 

duction and the plethora of photons energetic enough to dissociate light nuclei 

will surely destroy the brilliant agreement between the standard calculations of 

element abundances and observations. Since this is unacceptable, we must re- 

quire that the reheating temperature (5.9) is higher than 1 MeV. This gives a 
lower bound for the mass of the axino of 

mz > 20GeV ( I01&ev)2’3 (5.10) 

This is not a significant additional constraint. 
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More significant is the following consideration. As we ,have discussed, the 

axinos are relativistic when they decouple. Their density is therefore comparable 

to the photon density. If each decay of an axino ultimately produces at least one 

LSP with a mass of at least several GeV, we are evidently in grave danger of 
producing far more than critical density in LSPs. This can only be avoided if the 

LSPs produced in this way annihilate very efficiently. 

As usual, for concreteness let us suppose that the axinos decay into photinos. 

If the axinos decay before photino annihilation reactions freeze out, then the 

relic photino abundance will be unaffected by axino decays. The freeze out of 

photino annihilations occurs generically at T - n=,/ZO. (This is generally true 

for species which decouple when nonrelativistic and only depends logarithmically 

on the annihilation cross section.) If the axino decays occur after the photinos 

freeze out, then the relic photino abundance is increased relative to its value 
in the absence of &no decays by a factor of (mz,/20T~“, &cay)*. Since the 

relic photino abundance is usually not too different from the closure density, a 
significant increase in the relic abundance can not be tolerated. The condition 

that axino decays do not increase the relic photino abundance is 

Taxino decay > 2 . ( > 
(5.11) 

Prom (5.11) and (5.6) we conclude that in order to avoid producing more than 

the critical density in photinos, the axino must be heavier than 

mi > 3TeV ( 1,,l~ev)2’3 (l~v)2’3 . 

Given the estimate (3.19), this constraint seems very difficult to satisfy. The 
heavy unstable type I &no is a marginal possibility at best. 

This concludes our discussion of type I axino cosmology. Clearly the overall 

conclusion must be that it is difficult to incorporate these models into a reasonable 

cosmological scenario. 

Now let us consider type II axino models. 

In this scenario, the axino is the LSP, and we must ensure that the decay of the 

LOSP does not upset nucleosynthesis. As usual, we consider the case where the 
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LOSP is a photino and decays via q + 67. The entropy produced in this decay 

will not be significant since the universe will never have been LOSP dominated. 

Therefore the only constraint on the LOSP decay comes from the requirement 

that the photons from the decay must not be energetic enough to dissociate light 
nuclei. The single high energy decay photon will rapidly be degraded into many 

photons with energies E - (lMeV)*/(502’) [17] by pair production off photons 
in the high energy tail of the thermal photon distribution. Thus, the decay 

will yield photons with energies high enough to dissociate deuterium only if the 

temperature is below about 9 keV. Hence in the type II axino scenario, photinos 

must decay before a time of about lo4 seconds so that the deuterium produced 

during nucleosynthesis is not dissociated. From the,photino lifetime (4.4), we 
derive a lower bound on the photino mass of 

(5.13) 

If the LOSP is not a photino, but rather a different mixture of neutralinos, the 

lower bound (5.13) on its mass will not be affected qualitatively. If the LOSP is a 

sneutrino the lifetime is longer, and the bound somewhat more restrictive. (If its 
decay products included only an axino and neutrinos, then the argument leading 

to the lower bound (5.13) on its mass does not apply. However this seems very 
unlikely, given the decay schemes we mentioned before.) 

Now let us consider the cosmological implications of the type II axinos them- 
selves. The reaction in Figure 2 keeps axinos in thermal equilibrium at high 

temperatures. The axinos will decouple at the temperature TD given by (3.4) 
just as in the type I scenario. At the (supersymmetry violating) weak phase tran- 

sition, the type II axinos acquire their small mass. Since they are so light, they 

are almost certainly the stable LSPs, and hence they contribute to the overall 
density of the universe as dark matter. From (5.2) and the discussion surround- 

ing it, we must have ni < 2keV, and of course if rni - 2&V then Rih2 - 1. 

But this is exactly what is suggested by the estimate (3.20) ! 

Thermally produced light type II axinos are therefore reasonable candidates 

to form the wanted dark matter. They can contribute Rih2 - 1 for reasonable 
values of m;. It is very interesting to note that these light axinos are %.rm’ 

dark matter. They are colder than hot dark matter like neutrinos because they 
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decouple so early. They are hotter than cold dark matter, because they do 

decouple when relativistic. To be specific, let us consider axinos with a mass 
of 2 keV so that they contribute significantly to R. They will therefore become 

nonrelativistic when their temperature falls below 2 keV. At this point, the rest 

of the universe will be at a temperature of 

T rad -2keV (~i~$))1’3 - IOkeV . 

From this point until matter radiation equality T; - Re2 while Trad - R-’ where 

R is the scale factor. Hence, when the universe becomes matter dominated at 

T rod - 5.5R,h2eV 1141, the axinos are moving at a speed of about v/c - 10e3. 

In the type II axino scenario, there are two dark matter candidates - axinos 

which are warm dark matter and axions which are cold dark matter. For F 

between about 1O”GeV and lO’*GeV, both give significant contributions to the 

cosmological density. For larger values of F, the axions are dominant. For smaller 

values of F, the axinos are dominant. 

Warm dark matter may offer significant advantages in the context of structure 
formation in the universe [18]. Because keV mass axinos are moving more slowly 

than neutrinos when the universe becomes matter dominated, the damping scale 

in an axino dominated universe is shorter than in a neutrino dominated universe. 

In fact, the damping scale is very close to 1 Mpc which is the scale of galactic 

perturbations. By way of comparison, the damping scale in a neutrino dominated 

universe is 40 Mpc/(m,/30eV). In an axino dominated universe, therefore, the 

first structures to form are galaxy-sized, rather than the supercluster-sized struc- 

tures that form first in a hot dark matter model. While hot dark matter has some 

attractive features including the abundance of large scale structure it produces, 

its downfall is the failure to form galaxies sufficiently early, which can be traced 

directly to the large damping scale. Warm dark matter certainly corrects this 
difficulty. 

Warm dark matter may also have advantages over cold dark matter. In 

the cold dark matter scenario the damping scale is very small (< Mpc), and 
subgalactic-sized objects form first. While cold dark matter does an excellent 

job of reproducing the observed features of the universe on small scales, say less 

than about 20h-’ Mpc, there is growing concern that it does not reproduce the 
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wealth of structure that observers are discovering on large scales. Warm dark 

matter may offer some help here. When the spectrum of density perturbations 
for warm dark matter is normalized in the same way as that for cold dark matter, 

e.g. 9 = 1 on the scale 8h-’ Mpc, warm dark matter has more power on large 

scales than does cold dark matter. This additional power on large scales may be 

what is needed to to account for the structure on large scales. 

In sum, a universe dominated by type II axinos with mass of order 1 keV 
may be very attractive. It seems to incorporate the best features of both hot 
and cold dark matter. Galaxies form first as in cold dark matter, but there is 

more power on large scales than in cold dark matter. These advantages, together 

with the observation that type II axinos provide a theoretically compelling warm 

dark matter candidate, suggest that warm dark matter may be worthy of further 
detailed numerical study. 

6. Additional remarks, and conclusion 

The type III axino is plausibly even much lighter than IkeV. If that is 
true, the axino will destabilize the LOSP without itself becoming a dark matter 

candidate. 

Other interesting, theoretically motivated particles with possible cosmological 

implications that can be analyzed in the same spirit as above are the dilaton and 

its supersymmetric partner, the dilatino. They arise in superstring theory, but 

there is no consensus (even in the logarithm of the order of magnitude) as to the 

value of their mass. Their coupling is very weak; roughly speaking they behave 

like axions and axinos but with +- 
1 K. It would be worthwhile to analyze 

the bewildering variety of alternative possibilities the existence of these particles 

opens up, but we shall not attempt that here. 

Let us summarize. We have found that the existence of axinos, which in- 
evitably accompanies any attempt to implement the two appealing ideas of low- 
energy supersymmetry and Peccei-Quinn symmetry simultaneously, can drasti- 

cally affect the status of the dark matter problem. Axinos can and generally do 

destabilize the lightest ordinary superparticles, which are popular dark matter 
candidates. While removing these candidates, they seem themselves to provide 

a warm dark matter candidate in one class of models. 

27 



Finally, a methodological remark. The models analyzed here seem (certainly 

when viewed in isolation, without usable guidance from a larger framework) 
contrived. This actually seems to be true of models incorporating low energy 

supersymmetry generally, with or without Peccei-Quinn symmetry. It may well 
be that the difficulties in model-building are a sign that supersymmetry is broken 

by some different mechanism, which is poorly represented by the Higgs field 

paradigm. If so, it will become important to analyze the consequences of this 
hypothetical new mechanism for axino cosmology. It is also possible that the 

complexity of the models is merely a sign that our present universe has undergone 

many layers of symmetry breaking, and that there really are lots and lots of 

massive and supermassive fields and condensates, so that to ask both for economy 
and for realism in the effective theory is to ask for the impossible. 
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FIGURE CAPTIONS 

1. Feynman diagram for the radiative correction which generates a large axino 

msss in type I sxino models. 

2. Feynman diagram for a process maintaining the thermal equilibrium abun- 

dance of axinos at high temperature. 
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